3063

The structure was readily solved with direct methods and Fourier techniques. Since most hydrogen atoms were apparent in a difference Fourier synthesis, final refinement included hydrogen atoms placed in fixed idealized positions⁶ (d(C-H) = 0.95 Å, $B_{iso} = 4.0$ Å²). Full-matrix anisotropic refinement converged to $R(\tilde{F}) = \sum ||F_o| |F_{\rm c}|/\sum |F_{\rm o}| = 0.042$ and $R_{\rm w}(F) = \sum (w||F_{\rm o}| - |F_{\rm c}||)^2 / \sum w F_{\rm o}^2 = 0.053$. Weights, w, where calculated as $w(F_{\rm o}) = \sigma(I)^{1/2}/2F_{\rm o}$, where $\sigma(I)$ is based on counting statistics and an "ignorance factor" of 0.05. The goodness of fit for the last cycle was 1.22.

The $[Co((py)_1tach)](ClO_4)_2$ crystal used was an irregular shape with a maximum dimension of 0.25 mm. A total of 5235 reflections were measured for $4^{\circ} \le 2\theta \le 45^{\circ}$ and reduced as before to 2943 unique amplitudes. Refinement was identical with that of the Zn((py)₃tach)²⁺ sample and converged to R(F) = 0.079 and $R_w(F) = 0.033$. The goodness of fit for the final cycle was 1.76.

Fractional coordinates for non-hydrogen atoms are given in Table VI.

Acknowledgment. The authors thank the Marshall H. Wrubel Computing Center for generous use of computing facilities.

Registry No. [Co((py)₃tach)](ClO₄)₂, 28849-62-9; [Zn-((py)₃tach)](ClO₄)₂, 25765-80-4.

Supplementary Material Available: Complete lists of bonded distances and angles, hydrogen coordinates, anisotropic thermal parameters, and observed and calculated structure factors (49 pages). Ordering information is given on any current masthead page.

Contribution from the Department of Chemistry, The University of North Carolina, Chapel Hill, North Carolina 27514, and Chemistry Department I, Inorganic Chemistry, H. C. Ørsted Institute, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark

Structural and Magnetic Characterization of the Alkoxo-Bridged Chromium(III) Dimer Bis(µ-methoxo)bis[bis(2,4-pentanedionato)chromium(III)], [(acac)₂Cr(OCH₃)]₂

HELEN R. FISCHER, ^{1a} JØRGEN GLERUP, ^{1b} DEREK J. HODGSON, ^{*1a} and ERIK PEDERSEN*^{1b}

Received January 5, 1982

The complex bis(μ -methoxo)bis[bis(2,4-pentanedionato)chromium(III)], [(acac)₂Cr(OCH₃)]₂, [CrC₁₁H₁₇O₅]₂, has been synthesized, and its crystal structure has been determined from three-dimensional counter X-ray data. The complex crystallizes in the triclinic space group PI with two binuclear formula units in a cell of dimensions a = 10.958 (4) Å, b = 12.769 (3) Å, c = 10.073 (2) Å, $\alpha = 96.65$ (2)°, $\beta = 95.04$ (2)°, and $\gamma = 97.00$ (2)°. Least-squares refinement based on 1960 independent data has led to a final value of the weighted R factor (on F) of 0.048. The complex consists of two chromium(III) ions which are bridged by two methoxy groups, the remaining sites in the roughly octahedral coordination sphere being occupied by the oxygen atoms of two cis bidentate 2,4-pentanedionato ligands. The average Cr-O(ligand) bond length is 1.965 (10) Å while the Cr–Cr separation is 3.028 (2) Å and the Cr–O–Cr bridging angles are 100.8 (2) and 101.2 (2)°. The average value of the dihedral angle between the O-C bonds on the bridging methoxo groups and the bridging Cr2O2 least-squares plane is 29.8°. The isomer studied here is the racemic isomer in contrast with the meso form of analogous dimers previously studied. The temperature dependence of the magnetic susceptibility of the complex has been fitted to a model assuming independent triplet, quintet, and septet energies. The fit is consistent with the Heisenberg model corrected for biquadratic exchange and yields a triplet-state energy of 9.83 (6) cm^{-1} above the ground-state singlet.

Introduction

In recent years we²⁻⁹ and others¹⁰⁻¹⁴ have been studying the influence on the magnetic properties of chromium(III) dimers of small structural changes, with particular emphasis on the impact of changes in the bridging geometry of μ -hydroxo and $bis(\mu-hydroxo)$ chromium(III) dimers. While the bridging Cr-O-Cr angle (ϕ) and the Cr-O bond length (R) were

- (a) The University of North Carolina. (b) University of Copenhagen. (1)
- (2)
- Michelsen, K.; Pedersen, E. Acta Chem. Scand., Ser. A 1978, A 32, 847. Cline, S. J.; Kallesøe, S.; Pedersen, E.; Hodgson, D. J. Inorg. Chem. 1979, 18, 796. (3)
- (4) Hodgson, D. J.; Pedersen, E. Inorg. Chem. 1980, 19, 3116.
 (5) Cline, S. J.; Glerup, J.; Hodgson, D. J.; Jensen, G. S.; Pedersen, E.
- Inorg. Chem. 1981, 20, 2229.
 (6) Scaringe, R. P.; Hodgson, D. J.; Hatfield, W. E. Transition Met. Chem.
- 1981, 6, 340. Cline, S. J.; Hodgson, D. J.; Kallesøe, S.; Larsen, S.; Pedersen, E., (7) submitted for publication.
- Glerup, J.; Hodgson, D. J.; Pedersen, E., submitted for publication. Michelsen, K.; Pedersen, E.; Wilson, S. R.; Hodgson, D. J., submitted for publication.
- (10) Beutler, A.; Güdel, H. U.; Snellgrove, T. R.; Chapuis, G.; Schenk, K. J. Chem. Soc., Dalton Trans. 1979, 983.
- Kaas, K. Acta Crystallogr., Sect. B 1979, B 35, 596.
- Kaas, K. Acta Crystallogr., Sect. B 1979, 35, 1603. (12)
- Srdanov, G.; Herak, R.; Radanović, D. J.; Veselinović, D. S. Inorg. Chim. Acta 1980, 38, 37. (13)
- (14) Larsen, S.; Hansen, B. Acta Chem. Scand., Ser. A 1981, A 35, 105.

quickly seen to be significant, perhaps in analogy with earlier work on simpler systems,¹⁵ it is only relatively recently that the frequently overriding importance of the dihedral angle (θ) between the O-H vector and the bridging Cr_2O_2 (or Cr_2O for μ -hydroxo complexes) plane has been recognized.^{2-5,16,17} Regrettably, this parameter is often poorly determined even in precise X-ray structural studies because of the small contribution of hydrogen atoms to the X-ray structure factors.

While the use of neutron diffraction data provides, in principle, a solution to this problem, in practice a more valuable approach appears to be the synthesis and study of alkoxobridged rather than hydroxo-bridged complexes, since in the former the angle θ would be dependent only on chromium, oxygen, and carbon atomic parameters. The syntheses of several bis(µ-alkoxo) dimeric complexes of chromium(III) have been reported, ¹⁸⁻²⁰ but unfortunately none of the three synthetic routes suggested has proved amenable to extension to large

- Josephsen, J.; Pedersen, E. Inorg. Chem. 1977, 16, 2534. Güdel, H. U.; Hauser, U. J. Solid State Chem. 1980, 35, 230 (16)
- (17)
- Vaughn, J. W.; Seiler, G. J.; Wierschke, D. J. Inorg. Chem. 1977, 16, (18) 2423.
- (19) Kasuga, K.; Itou, T.; Yamamoto, Y. Bull. Chem. Soc. Jpn. 1974, 47, 1026.
- Mahendra, K. N.; Parashar, G. K.; Mehrotra, R. C. Synth. React. Inorg. Met-Org. Chem. 1979, 9, 213. (20)

Hodgson, D. J. Prog. Inorg. 1975, 19, 173 and references therein. (15)

Table I. Crystallographic and Data Collection Parameters

formula: $[CrC_{11}H_{17}O_{5}]_{2}$	$D_{\rm obsd} = 1.34 \ (2) \ {\rm g \ cm^{-3}}$
a = 10.958 (4) Å	Z = 2
b = 12.769 (3) A	$D_{calcd} = 1.352 \text{ g cm}^{-3}$
c = 10.073 (2) A	space group: P1
$\alpha = 96.65(2)^{\circ}$	$\mu = 8.69 \text{ cm}^{-1}$
$\beta = 95.04(2)^{\circ}$	max transmissn factor: 99.9%
$\gamma = 97.00(2)^{\circ}$	min transmissn factor: 85.1%
V = 1382 (1) Å ³	data collected: $\pm h, \pm k, \pm l$
NO = 1960	data range: $2^{\circ} \le 2\theta(Mo) \le 55$

numbers of analogous complexes; consequently, the only complexes whose structural and magnetic properties have been examined in detail are three $bis(\mu-alkoxo)$ complexes of chromium(III) with substituted acetylacetonate ligands, whose properties were reported by us several years $ago.^{21,22}$ We have now developed a modification of the synthetic route of Mehrotra and co-workers²⁰ which has permitted the extension of this scheme and which, we believe, will allow us to isolate an almost limitless array of $bis(\mu-alkoxo)$ chromium(III) dimers. We here report the use of this modified synthetic procedure for the preparation, isolation, and crystallization of the complex $bis(\mu-methoxo)bis[bis(2,4-pentanedionato)chromium(III)],$ [(acac)₂Cr(OCH₃)]₂, and the magnetic and structural properties of this dimeric species.

Experimental Section

Synthesis. To a solution of $CrCl_3$ ·3THF (7.5 g, 0.02 mol) in methanol (50 mL) were added 2,4-pentanedione (4.0 g, 0.04 mol) and sodium methoxide (3.24 g, 0.06 mol). The resulting green solution was refluxed for 10 min, benzene (150 mL) was added, and an azeotrope of benzene/methanol was distilled off. When 150 mL of azeotrope had distilled off, the temperature had risen to 80 °C and a green precipitate had formed. Most of the precipitate dissolved on the addition of further benzene (100 mL) and subsequent heating; the hot solution was filtered and the filtrate evaporated to 50 mL. This procedure represents a convenient modification of the method described by Mehrotra and co-workers.²⁰

The product was crystallized by the slow addition of hexane to the solution and recrystallized by dissolution in benzene and subsequent addition of sufficient hexane to produce the first trace of precipitate. The solution was then allowed to stand for several days, and the green crystals which formed were hand selected and dried on filter paper. Some of these crystals were used for the subsequent magnetic and crystallographic measurements.

Magnetic Susceptibility Measurements. The magnetic susceptibility of a microcrystalline sample of the complex was measured by the Faraday method at a field strength of 12 000 Oe in the temperature range 4–260 K. Descriptions of the instrumentation and data analysis techniques are available elsewhere.^{2,16}

Crystallographic Measurements. A green, prismatic crystal of the complex was mounted on an Enraf-Nonius CAD-4 diffractometer; preliminary analysis demonstrated that the complex belongs to the triclinic system, the cell chosen being consistent only with the space groups PI and P1. The centrosymmetric space group was chosen, and this assignment was justified by the successful refinement of the structure. The cell constants, observed and calculated densities, and data collection parameters are listed in Table I.

Solution and Refinement of the Structure. The locations of the two independent chromium atoms were deduced from a three-dimensional Patterson function, and all remaining non-hydrogen atoms were located in subsequent difference Fourier summations. Isotropic least-squares refinement of these 34 atoms gave values of the conventional agreement factors $R_1 = \sum ||F_0| - |F_c|| / \sum |F_0|$ and R_2 (weighted R factor) = $[\sum w(|F_0| - |F_c|)^2 / \sum w(F_0)^2]^{1/2}$ of 0.098 and 0.108, respectively. In all least-squares calculations refinement was carried out on F, the function minimized being $\sum w(|F_0| - |F_c|)^2$; the weights w were assigned as $4F_0^2/\sigma^2(F_0)^2$, where $\sigma(F_0)^2$ is given by $[\sigma^2(I) + (0.01I)^2]^{1/2}$ and $\sigma^2(I)$ is derived from counting statistics alone. Anisotropic refinement

Figure 1. View of the dimeric $[(acac)_2Cr(OCH_3)]_2$ molecule. Carbon atoms are shown as open ellipsoids, while Cr and O atoms are shaded. The numbering scheme for C atoms that are not labeled follows the normal convention for pentane and its derivates, with the addition of a suffix (A, B, etc.) to designate the ring. The molecule shown here has the $\Delta\Delta$ configuration, but in this centrosymmetric space group there are an equal number of molecules exhibiting the $\Lambda\Lambda$ configuration.

reduced the values of R_1 and R_2 to 0.072 and 0.078, respectively, and examination of a subsequent difference Fourier map revealed the location of all 34 hydrogen atoms. Attempts to refine the hydrogen atom parameters were unsuccessful, so all hydrogen atoms were assigned fixed isotropic thermal parameters of 8.0 Å² and were constrained to their observed locations. The final least-squares calculation, which involved anisotropic refinement of all non-hydrogen atoms but no refinement of any hydrogen atom parameter, gave values of R_1 and R_2 of 0.059 and 0.048, respectively; no parameter experienced a shift of more than 0.4 σ , which was taken as evidence of convergence. A final difference Fourier was featureless, with no peak higher than 0.3 e Å⁻³. All computer programs used were those provided by Enraf-Nonius in the CAD-4/SDP package.

The refined atomic positional parameters, along with their estimated standard deviations, are collected in Table II. The hydrogen atom coordinates, anisotropic librational parameters, and a listing of observed and calculated structure amplitudes are available as supplementary material.

Description of the Structure

The structure consists of dimeric $[(acac)_2Cr(OCH_3)]_2$ (acac = 2,4-pentanedionato) units, which are well separated from each other. The geometry of one dimer is shown in Figure 1, and the principal bond lengths and angles are displayed in Tables III and IV.

The geometry around each chromium center is roughly octahedral, the coordination sphere being occupied by two bidentate acac ligands and by two cis methoxo oxygen atoms. The Cr_2O_2 bridging unit is approximately planar, with no atom deviating from the unweighted least-squares plane by more than 0.012 Å. The methoxy carbon atoms C(1) and C(2) are considerably out of this plane, with C(1) lying 0.676 (8) Å above the plane while C(2) lies 0.729 (9) Å below it. With O(1)-C(1) and O(2)-C(2) bond lengths of 1.424 (7) and 1.409 (7) Å, respectively, these out-of-plane distances correspond to θ angles of 28.34 and 31.16°, respectively, or an average value for θ of 29.8°. As is shown in Table V, this value of θ is larger than those of 24.4 and 25.7° observed in the other methoxo-bridged dimers of chromium(III)^{21,22} and is considerably larger than that of 18.3° in the only ethoxo-bridged complex whose structure has been reported.²² The four independent bridging Cr–O bond distances (R) are in the range 1.951 (4) - 1.973 (4) Å, with an average value of 1.962 (9) Å. The Cr-Cr separation in the dimer is 3.028 (2) Å, which is within the narrow range of 3.025 (2)-3.038 (3) Å in the other

⁽²¹⁾ Estes, E. D.; Scaringe, R. P.; Hatfield, W. E.; Hodgson, D. J. Inorg. Chem. 1976, 15, 1179.

⁽²²⁾ Estes, E. D.; Scaringe, R. P.; Hatfield, W. E.; Hodgson, D. J. Inorg. Chem. 1977, 16, 1605.

atom	x	У	Z	atom	x		<i>y</i>	Z
Cr(1)	0.0150(1)	0.2571 (1)	0.2467 (1)	C4A	0.1363 (7)	0.14	79 (6)	0.4494 (8)
Cr(2)	-0.2573(1)	0.2455 (1)	0.1540(1)	C5A	0.1946 (8)	0.15	673 (6)	0.5903 (8)
O(1)	-0.1481(4)	0.2334 (4)	0.3135 (5)	CIB	0.3299(7)	0.37	739 (7)	0.0646 (10)
0(2)	-0.0956 (5)	0.2729(4)	0.0869 (5)	C2B	0.2322(7)	0.37	/81 (6)	0.1584 (8)
02A	0.0102(5)	0.1051(4) 0.2242(4)	0.1809(3)	C3B C4B	0.2152(8)	0.40	98 (6) 21 (C)	0.2330(9)
04A	0.1055(5)	0.2343(4)	0.4104(3) 0.1577(5)	C4B C5B	0.1134 (8)	0.48	SZI (6)	0.3062(8)
020	0.1039(3)	0.2000(4)	0.1377(3) 0.2185(5)	C1C	0.1023 (8)	0.58	994 (D)	0.3820(10) 0.2224(10)
046	-0.0285(5)	0.4093(4)	-0.0172(6)	C2C	-0.4339(9)	0.22	289 (9) 265 (7)	-0.2334(10) -0.1130(9)
040	-0.3303(3) -0.2698(5)	0.2012(4)	-0.0172(0)	C3C	-0.3662(7)	0.10	303(7)	-0.1120(9)
020	-0.2535(5)	0.3980 (4)	0.2093 (6)	C4C	-0.3787(8) -0.3778(7)	0.00		-0.1103(9)
04D	-0.4098(5)	0.3380(4)	0.2095(0)	C5C	-0.3228(7) -0.3185(8)	-0.07	788 (7)	-0.0044(0)
C(1)	-0.1807(8)	0.1599 (6)	0.4047(9)	C1D	-0.3133(8) -0.2734(9)	-0.07	(7)	0.0103(11) 0.3417(10)
C(2)	-0.0696(8)	0.3479(7)	-0.0024(9)	C2D	-0.3089(8)	0.33	124 (6)	0.2970 (9)
C1A	0.0382(8)	-0.0757(6)	0.1590 (8)	C3D	-0.4026(8)	0.38	124 (0) 193 (7)	0.2570 (5)
C2A	0.0582(7)	0.0334 (6)	0.2406 (8)	C4D	-0.4476(7)	0.28	844 (7)	0.3271(8)
C3A	0.1212 (7)	0.0529 (6)	0.3674 (8)	C5D	-0.5568 (8)	0.22	289 (8)	0.3906 (10)
Fable III. Princi	ipal Interatomic	Distances (A) in		Table]	IV. Principal B	ond Angles	(Deg) in [(ac	ac) ₂ Cr(OCH ₃)] ₂
[(acac) ₂ Cr(OCH ₃	.)] ₂			0(1)- $C_{T}(1)$ - $O(2)$	78.6 (2)	O(1) - Cr(2)	(2) 79.4 (2)
Cr(1) - O(1)	1.967 (4)	Cr(2) - O(1)	1.951 (4)	0(1)-Cr(1)-O2A	92.4 (2)	O(1)-Cr(2)	173.6
Cr(1) - O(2)	1.973 (4)	Cr(2) - O(2)	1.957 (5)	0(1)-Cr(1)-O4A	94.0 (2)	O(1) - Cr(3)	O4C 90.3 (2
Cr(1)-O2A	1.970 (4)	Cr(2)-O2C	1.969 (5)	0(1)-Cr(1)-O2B	172.0(2)	O(1)-Cr(2)-O(2)	D2D 90.9 (2
Cr(1)-04A	1.970 (4)	Cr(2)-O4C	1.945 (4)	0(1)-Cr(1)-O4B	89.3 (2)	O(1) - Cr(2)	D4D 94.5 (2
Cr(1)-O2B	1.966 (5)	Cr(2)-O2D	1.956 (5)	O(2)-Cr(1)-O2A	89.6 (2)	O(2) - Cr(2)	D2C 94.2 (2
Cr(1)-O4B	1.977 (4)	Cr(2)-O4D	1.965 (5)	0(2)-Cr(1)-O4A	172.4 (2)	O(2) - Cr(2)	D4C 92.8 (2
O(1)-C(1)	1.424 (7)	O(2)-C(2)	1.409 (7)	O(2	2)-Cr(1)-O2B	93.5 (2)	O(2)-Cr(2)-C	D2D 90.0 (2
C1A-C2A	1.515 (8)	C1C-C2C	1.550 (11)	O(2	2)-Cr(1)-O4B	93.2 (2)	O(2)-Cr(2)-C	D4D 173.8 (2
C2A-O2A	1.290 (7)	C2C-O2C	1.271 (8)	O24	A-Cr(1)-04A	89.4 (2)	O2C-Cr(2)-C	04C 90.1 (2
C2A-C3A	1.379 (8)	C2C-C3C	1.328 (10)	02/	A-Cr(1)-O2B	88.8 (2)	O2C-Cr(2)-C	D2D 89.1 (2
C3A–C4A	1.370 (8)	C3C-C4C	1.391 (10)	02/	A-Cr(1)-O4B	176.9 (2)	O2C-Cr(2)-C	04D 92.0 (2
C4A-04A	1.264 (7)	C4C-04C	1.242 (7)	O47	A-Cr(1)-O2B	94.0 (2)	04C-Cr(2)-C	D2D 177.1 (2
C4A–C5A	1.490 (8)	C4C-C5C	1.517 (9)	04/	A-Cr(1)-O4B	87.9 (2)	04C-Cr(2)-C	D4D 87.8 (2
C1B-C2B	1.490 (9)	C1D-C2D	1.476 (9)	021	B-Cr(1)-O4B	89.9 (2)	O2D-Cr(2)-C	D4D 89.5 (2
C2B-O2B	1.296 (7)	C2D-02D	1.238 (8)	Cr()	1)-O(1)-Cr(2)	101.2 (2)	Cr(1) - O(2) -	Cr(2) = 100.8(2)
C2B-C3B	1.358 (9)	C2D-C3D	1.405 (10)	Cr()	1)-O(1)-C(1)	124.7 (4)	Cr(1)-O(2)-O(2)	C(2) 124.5 (4
C3B-C4B	1.405 (9)	C3D-C4D	1.363 (10)	Cr()	2) - O(1)-C(1)	121.9 (4)	Cr(2) - O(2) -	C(2) 122.9 (4
C4B-O4B	1.258 (7)	C4D-O4D	1.277 (8)	Cr()	1)-O2A-C2A	128.1 (4)	Cr(2)-O2C-C	2C 125.5 (5
C4B-C5B	1.514 (9)	C4D-C5D	1.542(10)	Cr()	1)-04A-C4A	127.6 (4)	Cr(2) = 04C = C	C4C 128.2 (5
Cr(1)- $Cr(2)$	3.028 (2)			Cr(1) - 02B - 02B	127.4(5)	Cr(2) = O 2D =	2D 128.4 (6
						127.3(3)	CI(2) = 04D = 0	24D 124.4 (3 1C 111 2 (9
x'a			,µeff	02/	A-C2A-C3A	113.9(0) 123.7(6)	020-020-00	111.2(0)
				C14		123.7(0) 122.4(6)	$C_{1}C_{-}C_{2$	120.3 (1
				C24	-C3A-C4A	125 3 (6)	$C_1C_2C_2C_2$	122.2(0)
				04/	A-C4A-C3A	125.6(0)	04C-C4C-C'	3C 123.3 (8)
$ $ \wedge			<u>—</u> Э	04/	A-C4A-C5A	113.6 (6)	04C-C4C-C	5C = 116.0(8)
-1 / \wedge				C3/	A-C4A-C5A	120.9(7)	$C_{3}C_{-}C_{4$	C = 119.0 (c
	\setminus			021	3-C2B-C1B	112.8(7)	02D-C2D-C	1D 119.2 (9
' /			1	021	B-C2B-C3B	124.9 (7)	02D-C2D-C	3D 123.7 (8
			Γ '	C1E	3-C2B-C3B	122.2 (7)	C1D-C2D-C	3D 117.1 (8
1/				C2E	3-C3B-C4B	124.5 (7)	C2D-C3D-C	4D 123.6 (7
1		-		041	3-C4B-C3B	125.5 (7)	04D-C4D-C	3D 127.1 (8
			⊢ 1	041	B-C4B-C5B	114.8 (7)	04D-C4D-C	5D 109.7 (8
,				C3E	3-C4B-C5B	119.7 (7)	C3D-C4D-C	5D 123.2 (8
			1					
0				(2/m)	I hus, as is s	while the	ure I, the is	somer studied
1.			1	is the	racenne lorm	while the	OUNCT AIKO	vo-onagea an

iers studied were isolated as the centrosymmetric meso form. It is noteworthy that most of the dihydroxo-bridged chromium-(III) dimers studied crystallographically have also been meso,^{3,10,13,14} although the 1,10-phenanthroline complex [Cr- $(phen)_2OH]_2^{2+}$ is only isolated as the racemic isomer.^{23,24}

The four independent acac ligands are approximately planar, the greatest deviations of any atom from the least-squares planes through the five central atoms being 0.034 (8), 0.043 (8), 0.024 (8), and 0.016 (9) Å for the A, B, C, and D ligands, respectively. The geometry of the acac ligand is substantially

Figure 2. Temperature dependence of the magnetic susceptibility (left

scale, cgs units) and effective magnetic moment (right scale, Bohr

magnetons) of $[(acac)_2Cr(OCH_3)]_2$. The lower distribution of dots indicates the values of $(\chi_{obsd} - \chi_{calcd}) \times 100$, where χ_{calcd} is obtained from the parameters of model 3 in Table VI.

Cr(III) alkoxo-bridged dimers,^{21,22} and the two independent

Cr-O-Cr bridging angles (ϕ) are 100.8 (2) and 101.2 (2)°

with a mean value of 101.0 (3)°. As is also shown in Table V, these R and ϕ values are again comparable to those in the

200

100

n

analogues studied earlier.

Scaringe, R. P.; Singh, P.; Eckberg, R. P.; Hatfield, W. E.; Hodgson, (24)D. J. Inorg. Chem. 1975, 14, 1127.

⁽²³⁾ Veal, J. T.; Hatfield, W. E.; Hodgson, D. J. Acta Crystallogr., Sect. B 1973, B29, 12.

Although the actual geometry of the dimer is C_1 (1), it approximates D_2 (222) rather than the equally possible C_{2h}

Table V. Structural and Magnetic Properties of Bis(µ-alkoxo) Chromium(III) Dimers

complex	<i>R</i> , A	ϕ , deg	θ , deg	Jobsd,a cm ⁻¹	Jcalcd, b cm ⁻¹	ref
[Cr(3-Cl-acac) ₂ OMe] ₂	1.959 (2)	101.1 (1)	24.4	9.8	17.6	21
[Cr(3-Br-acac), OMe],	1.962 (4)	101.5 (2)	25.7	8.5	16.2	22
$[Cr(3-Br-acac)_2OEt]_2$	1.951 (6)	101.8 (3)	18.3	17.9	22.3	22
$[Cr(acac)_2OMe]_2^c$	1.962 (9)	101.0 (3)	29.8	9.8	15.2	this work

^a Since various magnetic models can be used, J here refers to the energy of the triplet state as calculated from the observed susceptibility data. ^b Calculated from the expression in ref 8. ^c The isomer studied here is the racemic form, while the other complexes studied were meso forms.

similar to that seen in a variety of metal complexes of acac.²⁵ The Cr-O(ligand) bond lengths are in the range 1.945 (4)-1.977 (4) Å with an average value of 1.965 (10) Å, which is again unremarkable. The four chelating O-Cr-O angles are in the very narrow range of 89.4 (2)-90.1 (2)°.

Magnetic Properties. The temperature dependence of the average magnetic susceptibility of polycrystalline $[(acac)_2Cr(OCH_3)]_2$ is displayed as Figure 2. The susceptibility data were fitted to the generalized expression (1), where

$$\chi'_{\rm A} = \frac{-N}{H} \left[\frac{\sum\limits_{i}^{i} \frac{\partial E_i}{\partial H} \exp(-E_i/kT)}{\sum\limits_{i} \exp(-E_i/kT)} \right]$$
(1)

H is the applied magnetic field strength, χ'_A is the observed susceptibility per chromium atom, the quantities E_i are the energies of the 16 components of the ground-state manifold, and the summations are taken over the 16 components. The data were fitted by using three different models (of varying levels of sophistication) for the exchange Hamiltonian.^{2,7,9} In model 1 we used the simple Heisenberg Hamiltonian given by expression 2, where S' is $(S_1 + S_2)$ and the only variable

$$H = J\tilde{S}_1 \cdot \tilde{S}_2 + g\beta M_{S'} \tag{2}$$

other than g is the exchange parameter J; this model gives rise to triplet, quintet, and septet energies of J, 3J, and 6J, respectively, relative to a singlet-state energy of zero. In model 2, the Hamiltonian was expanded to include a second-order (biquadratic) exchange term as in expression 3, where there

$$H = J\tilde{S}_{1}\cdot\tilde{S}_{2} + j(\tilde{S}_{1}\cdot\tilde{S}_{2})^{2} + g\beta M_{S'}$$
(3)

are now two variable exchange parameters, J and j. The triplet, quintet, and septet energies in this approximation are given by (J + 6.5j), (3J + 13.5j), and (6J + 9.0j), respectively. Finally, in model 3, we used the generalized Hamiltonian given in expression 4, where the energies E(S') of the triplet (S' =

$$H = E(S') + g\beta M_{S'} \tag{4}$$

1), quintet (S' = 2), and septet (S' = 3) states are independent. Here, therefore, there are three variable exchange parameters, namely E(1), E(2), and E(3). All three models assume the absence of any zero-field splitting term and an isotropic Zeeman effect. The data were fitted in each case by minimization of the function^{2,9}

$$\sum_{i} (\chi'_{i}(\text{obsd}) - \chi'_{A})^{2} / [\sigma^{2}(\chi) + (\partial \chi / \partial T)^{2} (\sigma^{2}(T))]$$

Table VI. Parameters Derived from Magnetic Susceptibility Data

model I	model 2	model 3	
9.40 (2)	9.00 (1)	m · /· ·	
	0.145 (3)		
9.40 (2) ^b	9.94 (1) ⁶	9.83 (6)	
28.20 (6) ^b	28.96 (3) ^b	28.90 (4)	
56.4 (1) ⁶	55.31 (6) ^b	55.1 (1)	
1.991 (1)	1.9764 (6)	1.9758 (7)	
5.09	1.06	1.05	
0.0070 (2)	0.0143 (2)	0.0131 (7)	
-	9.40 (2) 9.40 (2) ^b 28.20 (6) ^b 56.4 (1) ^b 1.991 (1) 5.09 0.0070 (2)	$\begin{array}{ccccc} 9.40(2) & 9.00(1) \\ & 0.145(3) \\ 9.40(2)^b & 9.94(1)^b \\ 28.20(6)^b & 28.96(3)^b \\ 56.4(1)^b & 55.31(6)^b \\ 1.991(1) & 1.9764(6) \\ 5.09 & 1.06 \\ 0.0070(2) & 0.0143(2) \end{array}$	

^a See text for definition of the magnetic models. ^b Calculated for comparative purposes from the derived parameter(s).

In all cases, in addition to the parameters noted, we varied a temperature-independent susceptibility term and a term which allowed for the presence of a small quantity of monomeric impurity.

The results of the data fitting to these three models are displayed in Table VI. It is apparent that while all three models lead to approximately the same derived or calculated magnetic parmeters, the fit to model 1 is significantly inferior to that obtained with model 2; it would appear, however, that inclusion of an additional variable (in model 3) is not accompanied by any further improvement, since the variance per degree of freedom (var/f) is lowered by less than 1%. However, use of either of these models leads to the conclusion that in the present complex the triplet state lies approximately 9.8 (1) cm⁻¹ higher in energy than the ground-state singlet.

The bridging geometry and magnetic properties of racemic $[(acac)_2Cr(OCH_3)]_2$ determined in the present study are compared with those found earlier for other bis(μ -alkoxo) dimers of chromium(III)^{21,22} in Table V. It is apparent from this table that the structural and magnetic properties in the present complex are very similar to those observed in the other methoxo-bridged dimers but differ significantly in θ and (subsequently) in J from those of the ethoxo-bridged species. It is noteworthy that the trends in the observed J values in Table V are entirely consistent with those calculated from the Glerup-Hodgson-Pedersen (GHP) model⁸ for the magnetism of chromium(III) dimers.

Acknowledgment is made to the donors of the Petroleum Research Fund, administered by the American Chemical Society, for support of this research (to D.J.H.), and to the Scientific Affairs Division, North Atlantic Treaty Organization (NATO), through Grant No. 1318 (to D.J.H., E.P., and J.G.).

Registry No. [(acac)₂Cr(OCH₃)]₂, 81739-57-3.

Supplementary Material Available: Listings of H atom coordinates, anisotropic librational parameters, and observed and calculated structure amplitudes (17 pages). Ordering information is given on any current masthead page.

⁽²⁵⁾ Morosin, B. Acta Crystallogr. 1965, 19, 131 and references therein.